81 Hello INTRODUCTION 1

1. Introduction. This program takes an integer n as input and prints “Hello world” n times. (There is
no Pascal code in this section.)

2. We give part of the program here, and it will continue later.
(Compiler directives 4)

program HELLO (input, output);
var (global variables 3)

3. What global variables do we need? For one thing, we need the n.
(global variables 3) =

n: integer;

See also sections 5 and 9.

This code is used in section 2.

4. For integer variables to be treated as 32-bit by the Pascal compiler, on FPC we need a special compiler
directive.
(Compiler directives 4) =

e{e&$modeiso@}

This code is used in section 2.

2 THE STRING POOL AND FILE I/O Hello §5

5. The string pool and file I/O. The WEB feature of string pools was designed at a time when Pascal
compilers did not have good support for strings. Now it may be no longer necessary, but to illustrate the
feature we will maintain a string pool.

More specifically, we will maintain a large array of characters, named str. All characters of all strings from
the string pool go into this array: the nth string occupies the positions from str_start[n] to str_start[n+1]—1
(inclusive) in this array, where str_start is an auxiliary array of integers. Also, the number of strings currently
in the string pool is stored in an integer variable called str_count.

By convention, the first 256 strings are the one-character (one-byte) strings. For this program we don’t
need too many additional strings. In fact we need just a few strings, but we’ll support 10 strings with a
total of 1000 characters.

define max_strings = 256 + 10
define max_total_string_length = 1000

(global variables 3) +=

str: array [0 .. maz_total_string_length — 1] of char;
str_start: array [0 .. maz_strings — 1] of integer;
str_count: integer;

6. To use this string pool, we have a procedure that reads out characters from it one-by-one. Specfically,
print (k) prints the kth string, and println and printnl are convenience macros.
define println (#) =
begin print (#); writeln;
end
define printnl(#) =
begin writeln; print (#);
end
procedure print(n : integer);
var i: integer;
begin @{writeln(For,",n, "L will print,characters from,", str_start[n], "Ltoy", str_start[n + 1] — 1);
e}
for i « str_start[n] to str_start[n + 1] — 1 do
begin write (str[i]);
end;
end;

§7 Hello THE STRING POOL AND FILET/O 3

7. We'll have a procedure to populate this array by reading from the pool file, but unfortunately that
means we need to figure out file input. How this is done depends on the Pascal compiler. In FPC, a file of
characters can be declared as a variable of type TextFile, initialized with Assign and Reset, then read with
read.

procedure initialize_str_array;
var pool_file: TextFile; x,y: char; { for the first two digits on each line }
length: integer; i: integer;
begin str_count + 0; str_start[0] < 0;
for i < 0 to 255 do
begin str[i| < chr(i); str_start[i + 1] < str_start[i] + 1; str_count < str_count + 1;
end;
Assign(pool_file, "hello.pool”); Reset(pool_file);
while —eof (pool_file) do
begin read (pool_file, x,y);
if x = "+~ then (check pool checksum 8)
else begin length < 10 % (ord(x) — "0") + ord(y) — "0";
str_start[str_count + 1] « str_start[str_count]| + length;
for i < str_start[str_count] to str_start[str_count + 1] — 1 do
begin read (pool_file, stri]);
end;
readln (pool_file); str_count < str_count + 1;
end
end;
end;

8. To ensure that the pool file hasn’t been modified since tangle was run, we can use the @Q$ (= Q$ =
at-sign, dollar-sign) feature. We can reuse (abuse?) the y and length variables for reading characters and
maintaining the checksum read from the file.

(check pool checksum 8) =

begin length < ord(y) — "0";

while —eof (pool_file) do
begin read (pool_file, y);
if ("0" < ord(y)) A (ord(y) < "9") then length + length % 10 + (ord(y) — "0");
end;

if length # @$ then
begin writeln(Corrupted pool file: got length:,~,length : 1,

“;urerun tangle and, recompile. "); Halt(1);

end

end

This code is used in section 7.

4 MAIN PROGRAM Hello

9. Main program. Apart from n, we also need an i to loop over.

(global variables 3) +=
it integer;

10. Here finally is the “main” block of the program.

begin initialize_str_array; print("How_many, times should, I say hello?,"); read(n);
printnl("0K, here are your,"); write(n : 1); println(" hellos:,");
for i < 1ton do
begin printin("Hello, world!");
end;
print ("There, said hello,"); write(n :1); printin(", times.");
end.

§9

§11 Hello INDEX 5

11. Index. If you're reading the woven output, you’ll see the index here.

Assign: 7

char: 5, 7

chr: 7

eof: 7,8

Halt: 8

HELLO: 2

i 6
inatialize_str_array: 7, 10
mput: 2

integer: 3, 4, 5,6, 7, 9
1s0: 4

length: 7, 8
max_strings: 5
max_total_string_length: 5
mode: 4

n: 3

ord: T, 8

output: 2

pool_file: 7, 8

print: 6, 10

println: 6, 10

printnl: 6, 10

read: 7, 8, 10
readln: 7
Reset: 7
str: 5, 6,

7
str_count: 5, 7
str_start: 5, 6, 7
system dependencies: 4, 7
TextFile: 7
write: 6, 10
writeln: 6, 8

6 NAMES OF THE SECTIONS Hello §11

(Compiler directives 4) Used in section 2.
(check pool checksum 8) Used in section 7.
<global variables 3, 5, 9> Used in section 2.

Hello

Section Page

Introduction 1 1
The string pool and file T/O 5 2
Main PrOGIaIlttt ettt et e e e e e e e 9 4
Index .o 11 5

	 Introduction
	 The string pool and file I/O
	 Main program
	 Index

